
DT, FILE COF-r A - 3a=i'.f-°C

AUTOMATIC COMPILER CONSTRUCTION

TOO FINAL REPORT

4 VINCENT P. HEURING
WILLIAM M. WAITE
GERHARD FISCHER

FEBRUARY 1, 1990- -i,

U.S. ARMY RESEARCH OFFICE

CONTRACT/DAAL 03-86-K-0100

UNIVERSITY OF COLORADO AT BOULDER
ELECTRICAL AND COMPUTER ENGINEERING

DEPARTMENT

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

W02 esO82

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN
THIS REPORT ARE THOSE OF THE AUTHOR(S) AND
SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR
DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION.

MISERCPUNCLASSIFIED ATECOY-FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFIC§ATION 1b. RSRCIEMRU

2b. DECLASSIPITONIOOWNGRAWAN SCEDL Approved for public release;
distribution unlimited.

4 PERFORMING ORGAMZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S

153-6923 AO2928E

G.NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL I7f. NAME OP MONITORING ORGANIZATION

____________________I U. S. Army Research Office

6L ADDRESS (CRY, Ste%W. ZIP WCD*) 7b. ADDRESS (CRY, Steve. and ZIP Code)
University of Colorado, ECE Department P. 0. Box 12211

Camps Bo 425Research Triangle Park, NC 27709-2211

6L NA OF FND"ISONSORSG f OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

U. S Arm ResarchOffie IDAALO3-86-K-O100

&L. ADDRESSM Stave. and ZWC* 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TAWK IWX UNIT

Research Triangle Park, NC 27709-2211ELMNNO N.N.N.

It. TITL eMdude Socuifty od.g

Automatic Compiler Construction

12. PERSONAL AUTHOR(S
Vincent P. Heuring, William M. Waite

138. TYPE OF REPORT 11b.TIME COVERED J1.DATE OF RE PO RT (roar. Month.Day) rs. PAGE COUNT
Final 7, FROM N15/ 8 6 T0 6/24/814 February 2, 1990 I6

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are thoseof he a t () a d s ot .be on stc ud as an fficial D ar tent of the Army position,
17. COSATI CODES 1S. SUBJECT TERMS (Continu on terom if necessely and i*19ty by block number)

FIELD GRW SUB-GROUP /oplrConstruction
Expert Systems
Automatic Programing

9. ABSTRACT (ConbAw on rewnS Nf .cmsy - demf~L#~251br -

-The system that we have developed with ARO support during the past thr~ee irovicny
demonstrates the technology required to:

- manage complex user requests within the context of a large tool suite.
-allow users to obtain instruction about how to make complex requests from the system
itself and

'easily develop processors for problem-oriented specification linguages.
We have used the system routinely in its own development and in a variety of applications
from circuit board layout through robot control to database qtiery specification. It is
now available for distribution to sites with Sun3 and Sun4 computers. C.

20. DISTRIBUTION I AVALAILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
D3uNctAssiFIeDwiUUIT 03 SAME As RPT. QDOTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDMDUAA. 2 2b. TELEPHONE (Includ Area oe)2cOFFIC SYMBOL

0O FORM 1473, o4M B 3 APR edition may be used untl eohasWtd. SECURITY CLASSIfICATION OF THIS5 PAGE
Alltd other edtio e oblete. UNCLASSIFIED

The system that we have developed with ARO support during the past three years convincingly
demonstrates the technology required to
* manage complex user requests within the context of a large tool suite,

* allow users to obtain instruction about how to make complex requests from the system itself, and

* easily develop processors for problem-oriented specification languages.

We have used the system routinely in its own development and in a variety of applications from circuit
board layout through robot control to database query specification. It is now available for distribution to
sites with Sun3 and Sun4 computers.

This report summarizes the most important results of our research, and places them in the context of
the general problem of transitioning the technology represented by large software systems. The work
described here relates directly to the growing problem of moving results out of the laboratory into day-to-
day life. We show how the inevitable complexity of a modular collection of processes can be hidden from
the user by an expert system that understands their low-level relationships. That expert system can observe
the behavior of the hidden processes and interpret their actions in terms the user understands. It can also
call on extensive tutorial material, including exercises for the user, to aid the user in completing a task. In
order to demonstrate these principles, we have used them to construct a system that solves a real-life prob-
lem - construction of processors for problem-oriented specification languages.

1. The Problem - Using Computers More Effectively

Any computer, from a small PC to a large mainframe, provides an environment within which a user
makes requests. The requests may simply extract information from the environment (e.g. a request to
obtain the size of a file) or they may alter the environment (e.g. a request to compile a program and store
the object file). Some requests are simple to implement and other are more complex, but each appears to
the user as an atomic operation that carries out some useful task. One way to use the computer more effec-
tively is to "package" commonly-used combinations of requests as single requests. Most operating sys-
tems provide command script mechanisms for this purpose, and special tools like the Unix maket may also
be available. Unfortunately, neither of these approaches is entirely satisfactory. Command scripts are too
rigid, and make-like tools neither provide sufficient parueterization nor suflicient hiding of intermediate
prduct.

Many requests made of computers require large-scale parameterization: The class of problems to be
solved by the request is well-understood, but there are a large number of problem instances that must be
solved in slightly different ways. A typical example of such a situation is a request to sort some data file.
The general sorting problem is well-understood, but a particular solution depends upon many things (collat-
ing sequence, primary and secondary fields, characters to be ignored, etc.) The general approach to such
problems is to create processor generators that accept a description of the problem instance and create a
processor to handle requests for its solution. Problem descriptions are written in declarative notations that
have often been called fournh-generation languages.

Creation of a processor generator is basically a compiler construction task. The fourth-generation
problem-description language must be designed, and a program built to analyze descriptions in this
language and produce processors that solve the problems described. Requiring that all processor genera-
tors be built by people trained in compiler construction would, however, seriously limit the availability of
this problem solving technique. It is much better to provide people who need processor generators with the
ability to construct them directly.

The goal of our research project was a system that would allow a person needing a processor genera-
tor to write declarative specifications describing the desired fourth-generation language and its translation, [
and then request construction of the specified processor generator. In order to produce such a system, we'
had to manage the request to produce the processor generator from its specification (which is very com-
plex, but must appear atomic to the user). In order to make the system usable to people other than its
designers, we had to provide easy ways for users to learn to use it and to obtain aid in interpreting diagnos-,
tic outpuL

AVa ,lln"!IAty Codes
Ava il and/or

"Dist Special

2. Management of Complex User Requests

Our first problem was how to manage a request for processor generation. We knew that such a
request would involve activation of a number of separate tools to create processor components and to
integrate those components into a functioning whole. Many of the individual tools would be obtained from
other sources, because the cost of redeveloping them in-house would be prohibitive. That meant that what-
ever management mechanism we chose could not require specific tool interfaces. Since the users of the
system would not be experts in compiler construction it was important to hide both the tools and the inter-
mediate products. Although we needed to allow the user to create simple processors simply, facilities also
needed to be available for creation of complex processors that did not precisely fit a standard model. Thus
the creation request needed to be parameterizable. Finally, the management tool needed to be flexible so
that we could add new tools and change existing tools on the basis of our experience during the project.

We chose Odin,2 3 an expert system whose domain of expertise is management of complex user
requests, as our management tool.4 Odin. like any expert system, separates the inference engine that
manages the user's request from the knowledge base that specifies the management policies. The manufac-
ture of a processor is described by a derivwion graph, a declarative specification from which Odin's
knowledge base can be generated. Because the derivation graph is a declarative specification rather than a
program, it is easy to change and can be checked for consistency. This allows us the required flexibility to
add and alter tools. Odin's inference engine is completely independent of the processor-generation prob-
lem, and could be used to manage any collection of software tools.

Nodes in the derivation graph represent either tools or objects. Tools are actually implemented by
operating system command scripts. Odin allows the node to choose the command processor it will use, the
directory in which it will run, and the commands it will execute. Thus the actions taken by a node can be
tailored to the tool it invokes, permitting us to employ arbitrary tools for which only object code is avail-
able, or which require input or output format changes. This allows use of off-the-shelf tools and avoids
having to do extensive tool development in-house. Again, the behavior is independent of the processor-
generation problem; any collection of arbitrary programs could be managed.

The derivation graph is normally invisible to the user, although it is possible to get explanations of
what Odin is doing in terms of the derivation graph. (A hallmark of an expert system is that it can explain
the reasoning by which it arrives at a requested result.) This means that we can increase the complexity of
the manufacturing process without increasing the cognitive load on the user. Intermediate products used
during the manufacture are also invisible. They are kept in a separate directory called the cache. Wher-
ever possible, Odin will use existing copies of intermediate object in satisfying requests, thus reducing
manufacturing costs.

During the grant period, we have worked closely with the developer of Odin in devising techniques
for derivation graph specification that increase flexibility and simplify processing. We now have standard
approaches to the introduction of new tools, and very powerful mechanisms for varying the manufacturing
steps on the basis of the particular set of specifications supplied by the user. This latter improvement has
drastically reduced the need for user parameters to control manufacture.

3. Error Reporting and Documentation

Error reporting is a critical problem when dealing with complex user requests. The situation is
analogous to that found in a complex program when a low-level component detects an error, but does not
have sufficient context to report that error in terms understandable to the user. The technique of "unhur-
ried diagnostics" was developed to deal with this problem. 6 A program having information about a failure
may take any one of four actions:

1) Output the information and terminate.

2) Output the information and proceed by an alternate route.

3) Suppress the information and proceed by an alternate route.

4) If not the main program, pass the information to its callcr and indicate failure.

The original version of Odin allowed each of the first three actions to be takcn by individual nodes; the
fourth was added during the grant period.

The important point is that the derivaton graph can specify arbitrary manufacturing steps to be
applied to error reports. Those manufacturing steps can access arbitrary information about both the deriva-
tion graph and the current contents of the cache. Thus it is possible to apply a complex interpretation pro-
cess to reports provided by any tool, without altering the tool in any way. A user of the system is unaware
of this interpretation process, and need know nothing about the tool issuing the report.

We have increased the amount of information available for error reporting by placing the system
documentation on line in hypertext form. Not only does this allow the user to browse the documentation in
order to answer question arising while creating specifications, but it permits the error analysis to access the
documentation needed to explain a failure. There is no need for the user to have the printed form of the
system documentation at hand because a simple request will place them in hypertext browsing mode at the
most likely explanation of their problem. If the system is wrong, the user is in a position to browse the
entire set of documentation if necessary.

Both the hypertext form and the printed form of the system documentation are generated from a sin-
gle body of text. Thus we avoid any possible inconsistencies and reduce the cost of producing the hyper-
text to zero.

We have made a modification to the hypertext browser that allows a reader to modify and execute
examples given in the documentation. This feature is the basis of a system tutorial for self-paced learning.
A set of graded examples with accompanying exercises introduces the new user to the individual
specification methods supported by the system. Our experience has been that this approach to teaching
people how to use the system is much more effective than either a printed manual alone or a sequence of
lectures.

4. Processor Generation

We began this research project with the usual complement of compiler construction tools: a lexical
analyzer generator, 7 a parser generators and an attribute grammar processor.° After building a derivation
graph that managed these tools and a collection of scripts to make them work together we had a rudimen-
tary system for generating language processors. There were two basic deficiencies in this system that we
have attacked during the grant period - the weakness of the specification techniques and the poor perfor-
mance of the generated processors.

If a language processor is specified by a set of regular expressions (input to the lexical analyzer gen-
erator), a context-free grammar (input to the parser generator) and an attribute grammar then most of the
processor's behavior must be specified algorithmically within the attribute grammar. Our research has
identified several additional subproblems that can be specified declaratively instcad of algorithmically. We
have used the system to generate processors for fourth-generation languages in which these declarative
specifications can be written. By extending the derivation graph, we incorporated these processors into the
system. A user does not need to know of the existence of the additional processors. If specifications in the
languages they implement are provided to the system, they are invoked; otherwise they are not.

A parallel effort involves the individual tools themselves. In response to experience with our lexical
analyzer generator we redefined the specification language to increase its flexibility and to allow for library
specifications. We replaced the parser generator with a new version from Germany, increasing the speed
of the generated processor by a factor of five without altering the specification language. The system now
supports two attribute grammar analyzers, selecting one or the other on the basis of the type of specification
file provided by the user. Extensive measurements of generated processors and comparisons with hand
coded versions have led to modifications of the system and better results.

One of the more difficult tasks when specifying a language processor seems to be the design of the
context-free grammar that describes program structure. In order to construct an efficient parser for the
language, the grammar must satisfy certain constraints. When these constraints are not satisfied, it is often
difficult for the designer to determine how the grammar should be changed. The constraint violation is
sometimes the result of a subtle ambiguity in the language definition, and sometimes simply due to a
blunder in writing the grammar. We have developed a processor that is capable of pinpointing the most
common ambiguities and fixing up the blunders. This processor dramatically reduces the difficulty of
specifying grammars.

5. Conclusion
Our original proposal was to apply Artificial Intelligence techniques to the problem of automatic

compiler construction. We said that the work would result in an integrated development environment that
provides:

0 greatly reduced compiler development time

* compilers as fast and compact as those constmted by hand

* guaranteed compiler reliability

* a reduction of human expertise required in compiler construction

* a simple path for compiler maintainability

* greatly reduced life-cycle cost.

These objectives have been met. We are currendy distributing the system, called Eli, for Sun3 and Sun4
equipment. Our experience with a wide variety of language processors indicates that development time is
about 1/3 of that required using other approaches. Our measurements of a generated C compiler indicate
that it has approximately the same performance as gcc, a well-regarded compiler that was coded by hand.
Compilers generated by Eli do not crash. They always behave exactly according to the specifications from
which they were generated. We have used Eli in a project class at the University of Colorado for three
years, with students who have no prior compiler construction experience. They are able to create relatively
sophisticated language processo without becoming compiler constrction experts. Since the processors
are generated from specifications, compiler maintenance is reduced to maintenance of the specificatio s.
Many parts of these specifications are re-usable, thus reducing the total life-cycle cost of each compiler.

In addition to providing the specific development environment for language processors, we have
demonstrated the technology needed to construct such environments in general. This technology can be
applied to any situation in which a number of off-the-shelf software components must be combined to
satisfy a single complex request. Our approach can be used to create a flexible system that provides error
reports at an appropriate level, extensive documentation and help facilities, and is capable of tutoring its

6. References

1. S. 1. Feldman, 'Make - A Program for Maintaining Computer Programs', Software-Practice &
Experience, 9, (April 1979).

2. G. M. Clemm, 'The Odin System - An Object Manager for Software Environments', Ph.D. Thesis,
Department of Computer Science, University of Colorado, Boulder, CO, 1986.

3. G. M. Clemm, 'The Odin Specification Language', in International Workshop on Software Version
and Configuration Control '88, Teubner, Stuttgart, FRO, 1988.

4. W. M. Waite, V. P. Heuring and U. Kastens, 'Configuration Control in Compiler Construction', in
Proceedings of the International Workshop on Software Version and Configuration Control,
Teubner, Stuttgart, FRO, 1988.

5. E. Borison, 'A Model of Software Manufacture', in Advanced Programming Environments, vol. 244,
R. Conradi, T. M. Didriksen and D. H. Wanvik, (eds.), Springer Verlag, Heidelberg, 1986.

6. W. S. Brown, 'An Operating Environment for Dynamic-Recursive Computer Programming
Systems', Communications of the ACM, 8, 371-377 (June 1965).

7. V. P. Heuring, 'The Automatic Generation of Fast Lexical Analyzers', Software-Practice &
Experience, 16,801-808 (September 1986).

8. P. Dencker, K. Dwrre and J. Heuft, 'Optimization of Parser Tables for Portable Compilers', ACM
Transactions on Programming Languages and Systems, 6, 546-572 (October 1984).

9. U. Kastens, B. Hutt and E. Zimmermann, GAG: A Practical Compiler Generator, Springer Vcrlag,
Heidelberg, 1982.

